Nonparametric Bayesian Learning of Switching Linear Dynamical Systems

نویسندگان

  • Emily B. Fox
  • Erik B. Sudderth
  • Michael I. Jordan
  • Alan S. Willsky
چکیده

Many nonlinear dynamical phenomena can be effectively modeled by a system that switches among a set of conditionally linear dynamical modes. We consider two such models: the switching linear dynamical system (SLDS) and the switching vector autoregressive (VAR) process. Our nonparametric Bayesian approach utilizes a hierarchical Dirichlet process prior to learn an unknown number of persistent, smooth dynamical modes. We develop a sampling algorithm that combines a truncated approximation to the Dirichlet process with efficient joint sampling of the mode and state sequences. The utility and flexibility of our model are demonstrated on synthetic data, sequences of dancing honey bees, and the IBOVESPA stock index.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonparametric Bayesian Identification of Jump Systems with Sparse Dependencies ⋆

Many nonlinear dynamical phenomena can be effectively modeled by a system that switches among a set of conditionally linear dynamical modes. We consider two such Markov jump linear systems: the switching linear dynamical system (SLDS) and the switching vector autoregressive (S-VAR) process. In this paper, we present a nonparametric Bayesian approach to identifying an unknown number of persisten...

متن کامل

Nonparametric Bayesian identification of jump systems with sparse dependencies Citation

Many nonlinear dynamical phenomena can be effectively modeled by a system that switches among a set of conditionally linear dynamical modes. We consider two such Markov jump linear systems: the switching linear dynamical system (SLDS) and the switching vector autoregressive (S-VAR) process. In this paper, we present a nonparametric Bayesian approach to identifying an unknown number of persisten...

متن کامل

Bayesian Learning and Inference in Recurrent Switching Linear Dynamical Systems

Many natural systems, such as neurons firing in the brain or basketball teams traversing a court, give rise to time series data with complex, nonlinear dynamics. We can gain insight into these systems by decomposing the data into segments that are each explained by simpler dynamic units. Building on switching linear dynamical systems (SLDS), we develop a model class and Bayesian inference algor...

متن کامل

Bayesian nonparametric learning of complex dynamical phenomena

The complexity of many dynamical phenomena precludes the use of linear models for which exact analytic techniques are available. However, inference on standard nonlinear models quickly becomes intractable. In some cases, Markov switching processes, with switches between a set of simpler models, are employed to describe the observed dynamics. Such models typically rely on pre-specifying the numb...

متن کامل

A Dynamic Bayesian Network Approach to Tracking Using Learned Switching Dynamic Models

Switching linear dynamic systems (SLDS) attempt to describe a complex nonlinear dynamic system with a succession of linear models indexed by a switching variable. Unfortunately, despite SLDS’s simplicity exact state and parameter estimation are still intractable. Recently, a broad class of learning and inference algorithms for time-series models have been successfully cast in the framework of d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008